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Climate change is likely to drive complex shifts in the distribution and ecology of marine species. Projections of future changes may vary, how-
ever, depending on the biological impact model used. In this study, we compared a correlative species distribution model and a simple mech-
anistic oxygen balance model for Atlantic bluefin tuna (Thunnus thynnus: ABFT) in the North Atlantic Ocean. Both models gave similar
results for the recent historical time period, and suggested that ABFT generally occupy favourable metabolic habitats. Projections from an
earth system model showed largely temperature-induced reductions in ABFT habitat in the tropical and sub-tropical Atlantic by 2100.
However, the oxygen balance model showed more optimistic results in parts of the subpolar North Atlantic. This was partially due to an in-
herent ability to extrapolate beyond conditions currently encountered by pelagic longline fishing fleets. Projections included considerable un-
certainty due to the simplicity of the biological models, and the coarse spatiotemporal resolution of the analyses. Despite these limitations,
our results suggest that climate change is likely to increase metabolic stress on ABFT in sub-tropical habitats, but may improve habitat suit-
ability in subpolar habitats, with implications for spawning and migratory behaviours, and availability to fishing fleets.
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Introduction
Anthropogenic climate change has the potential to change the

face of modern fisheries management in the coming decades.

Most stock assessment models and fishery management plans as-

sume constant stock–recruitment relationships, environmentally

invariant stock productivity, and relatively static species distribu-

tion ranges (McIlgorm, 2010; Punt et al., 2013). These assump-

tions are likely to prove increasingly impractical as changes in

ocean temperature, productivity, acidity, and biogeochemistry

result in complex, ecosystem-level impacts to managed fish popu-

lations (Kirby et al., 2009; Poloczanska et al., 2013; Pörtner et al.,

2014; Breitburg et al., 2015).

This realization has led to multiple studies attempting to pro-

ject the potential impacts of directional climate change on the

distribution, recruitment potential, phenology, and productivity

of marine species (Cheung et al., 2010; Hobday, 2010; Bell et al.,

2013; Hollowed et al., 2013; Lehodey et al., 2013). Methods range

from the relatively simple to the extremely complex, and may
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include considerations of distribution, physiology and phenology

across multiple life stages (Koenigstein et al., 2016; Peck et al.,

2016). One of the more common approaches is to use statistical

methods to relate present-day distributions of species to their en-

vironment, and to then apply these to future projections from

general circulation models (GCMs) (Hartog et al., 2011; Stock

et al., 2011; Hazen et al., 2013; Muhling et al., 2015; Coro et al.,

2016; Peck et al., 2016). These methods are usually non-

parametric, multivariate, and can cope with interactions among

predictor variables, either explicitly or implicitly (Guisan and

Zimmermann, 2000).

The main advantages of using correlative species distributions

models (SDMs) for projecting climate change impacts on living

marine resources are that they are conceptually simple, and usu-

ally require relatively few input variables. They require no explicit

parameterization of physiology, behaviour, recruitment, or food

web dynamics (Dormann et al., 2012; Peck et al., 2016). However,

these characteristics also constitute their main disadvantages, as

key processes driving climate impacts on the physiology and

phenology of a species may be missed. These models also assume

that statistical relationships observed between fish and their en-

vironment in the recent past will continue to apply into the fu-

ture. This may not always be a valid assumption, particularly for

correlations that have no obvious mechanistic basis (Dormann

et al., 2012; Horodysky et al., 2015, 2016; Peck et al., 2016). In

addition, the assumption that observed species distributions cor-

respond to ecological niches is often overly simplistic (Martinez-

Meyer, 2005; Robinson et al., 2011), particularly for highly migra-

tory pelagic species with broad environmental tolerances, such as

Atlantic bluefin tuna (Thunnus thynnus: ABFT).

Adult ABFT range throughout the northern Atlantic Ocean,

and are capable of trans-basin migrations in as little as a few

months (Mather et al., 1995; Block et al., 2005). They can tolerate

near-freezing conditions on northern foraging grounds (Block

et al., 2005; Walli et al., 2009; Teo and Boustany, 2016), and tem-

peratures approaching 30 �C on their Gulf of Mexico spawning

grounds (Teo et al., 2007). Adult ABFT can also experience ambi-

ent temperature changes of >20 �C when descending to several

hundred metres depth to feed (Block et al., 2001; Teo and

Boustany, 2016). However, they have several characteristics that

may cause them to be highly vulnerable to climate change. First,

both the eastern and western Atlantic stocks are currently re-

covering from historically low spawning stock biomasses caused

by overfishing (ICCAT, 2014; Porch and Lauretta, 2016). Over-

exploited populations may show reduced genetic diversity, and

compromised resilience to environmental change (Conover and

Munch, 2002; Berkeley et al., 2004; Ward et al., 2016). Second,

ABFT target specific environmental conditions for spawning,

which constitute a small proportion of their overall range in both

space and time (Muhling et al., 2013; Reglero et al., 2014). Larval

collections suggest that the majority of spawning is concentrated

in the Gulf of Mexico (western stock) and the Mediterranean Sea

(eastern stock), although additional spawning areas have recently

been confirmed (Muhling et al., 2011; Lamkin et al., 2015;

Richardson et al., 2016). Significant environmental changes to

current spawning areas would therefore require either adaptation

of both adults and larvae to new conditions on existing spawning

grounds, or changes in migration behaviour to exploit new

spawning grounds. The reproductive strategy of ABFT (long mi-

grations to spatiotemporally restricted spawning grounds with

specific environmental conditions) may prove to be a significant

bottleneck as the effects of directional climate change continue to

accumulate.

The unique anatomy and physiology of ABFT may also render

them vulnerable to climate change. Similar to the two other blue-

fin tuna species (Pacific: T. orientalis, and Southern: T. maccoyii),

ABFT have a well-developed vascular counter-current heat ex-

change system that allows them to maintain internal temperature

up to 20 �C above ambient. Along with other adaptations, this

has allowed ABFT to exploit food resources in the cold, highly

productive north Atlantic (Carey and Teal, 1966, 1969; Block

et al., 2001; Logan et al., 2015). However, it has been speculated

that these physiological adaptations for cold waters may be a hin-

drance on subtropical spawning grounds (Block et al., 2005; Teo

et al., 2007). ABFT have proportionally higher oxygen demands

than warm-water Thunnus species (e.g. yellowfin tuna, Blank

et al., 2007a), and very warm temperatures may induce metabolic

stress more quickly in bluefin tunas than in other tunas (Blank

et al., 2004; Block et al., 2005; Kitagawa et al., 2006). Several au-

thors have suggested that metabolic constraints may be major de-

terminants of the spatial distribution of marine species (Brill,

1994; Pörtner and Knust, 2007; Farrell, 2009; Prince et al., 2010;

Deutsch et al., 2015; Farrell, 2016) although the relationships be-

tween metabolic rates and ambient temperature/oxygen may not

follow a universal form for all species and life stages (Clark et al.,

2013a). Future shifts in species ranges could therefore be partially

driven by temperature-mediated oxygen availability.

In this study, we used two different approaches to project fu-

ture distribution of suitable habitat for ABFT in the North

Atlantic resulting from the effects of directional climate change.

We first assessed the ability of a correlative SDM and a mechanis-

tic metabolic oxygen balance model to reproduce present-day dis-

tributions of ABFT. We then projected both models forward in

time using output from an earth system model, and compared

the projections from both approaches between the late 20th cen-

tury (1971–2000), and the late 21st century (2071–2100).

Methods
Metabolic oxygen balance model
Although similar in concept, our metabolic model does not rely on

the traditional calculation of metabolic scope (e.g. maximum meta-

bolic rate vs. standard metabolic rate: Del Raye and Weng, 2015;

Farrell, 2016). We therefore named it an “oxygen balance model” to

avoid confusion. The model was comprised of three sub-

components: an oxygen demand model, an oxygen supply model,

and a cardiac transport model (Figure 1). All three were parameter-

ized using published results of experiments on captive tunas. Few

studies have been published using ABFT, and so studies on Pacific

bluefin tuna and yellowfin tuna (YFT) were adapted as required.

Due to difficulties inherent in keeping captive tunas, most

studies to date have used juvenile fish: usually <3 kg for YFT, and

�10 kg for bluefin tunas (Bushnell and Brill, 1991; Blank et al.,

2007a, b; Clark et al., 2013b). How applicable these are to adult

ABFT is largely unknown. Metabolic rates scale with body size, as

do gill ventilation volumes and heat conservation characteristics

(Carey and Teal, 1969; Clarke and Johnston, 1999; Whitlock

et al., 2015). While juvenile tuna are also capable of endothermy,

larger tuna may warm more extensive regions of the body, and

show higher thermal inertia (Graham and Dickson, 2001). In

terms of lower temperature limits, juvenile bluefin tunas forage in

waters nearly as cold as those tolerated by adults, but dive to
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shallower depths, and may have a more restricted latitudinal

range (Mather et al., 1995; Gunn and Young, 1999; Brill et al.,

2002; Bestley et al., 2009; Galuardi and Lutcavage, 2012).

Predictions of suitable metabolic habitat from the oxygen balance

model developed here are thus unlikely to be substantially differ-

ent from those for larger adults, but will probably be more con-

servative at extreme low temperatures.

The oxygen demand model was built using experimental re-

sults on Pacific bluefin tuna from Blank et al. (2007a, b) and

Clark et al. (2013b). These studies highlighted non-linear rela-

tionships between metabolic rates (mg O2/kg/h) and water tem-

perature, with minimum values at 10–20 �C, and higher values at

<10 �C and >20 �C. Metabolic rates also increased non-linearly

with swimming speed, but the scale of the response depended on

water temperature (Blank et al., 2007a). Observed measurements

of metabolic rate were extracted directly from figures in Blank

et al., (2007a, b) and Clark et al. (2013b), and used to construct a

Generalized Additive Model (GAM) with a Gaussian error distri-

bution using the mgcv package in R 3.2.1 (Wood, 2006; R Core

Team, 2015). The GAM predicted metabolic rate (MO2) based on

swimming speed (U) in BL/s and water temperature (T). A

smoothing spline was applied to each predictor variable, and a

linear interaction term was also included, such that:

MO2 ¼ f1ðUÞ þ f2ðTÞ þ f3ðU ;TÞ (1)

The oxygen supply model was adapted from equations developed

for YFT (Bushnell and Brill, 1991). Ventilation volume (Vg: the

volume of water passing through the gills) depended on swimming

speed and mouth gape (assumed to be 1 at normoxia), which were

in turn dependent on ambient oxygen concentrations. The first

issue was the need to scale the equations in Bushnell and Brill

(1991) from a 1.4 kg YFT to a �10 kg ABFT. A 10 kg ABFT is 7.14

times the weight of a 1.4 kg YFT, but only about two times the

length, with approximately three times as much gill area, and five

times as much gill weight (Muir and Hughes, 1969; Pauly, 1979;

Fromentin, 2006). It is not clear which of these metrics is the best

scalar for Vg, and so we chose to assume that the Vg under nor-

moxia for a 10 kg ABFT would be three times as much as a 1.4 kg

YFT (an intermediate value among the scalars listed above). The

equation to calculate base Vg under normoxia thus becomes

Vgb ¼ 9:36 U (2)

Where Vgb is ventilation volume (L/min: note conversion from

Bushnell and Brill, 1991, who used L/s) and U is swimming speed

in body lengths per second (BL/s). Bushnell and Brill (1991) also

found that Vg in YFT increases under hypoxic conditions. We

used the same response for the ABFT model, but adjusted for the

greater Vg of the larger fish. This was achieved by calculating a Vg

multiplier (Vgm) such that when ambient oxygen concentrations

are <7.0 mg/m3

Vgm ¼ �0:30 O2 þ 2:92 (3)

And, when ambient oxygen is >7.0 mg/m3

Vgm ¼ 1 (4)

where O2 is ambient oxygen concentration (mg/m3). Actual Vg is

then simply

Vg ¼ Vgb Vgm (5)

The last parameter required was utilization of the available oxy-

gen coming in through the gills (%U). This value varies inversely

with Vg (Bushnell and Brill, 1991). We assumed that the drop in

%U with Vg was proportionally the same for ABFT as observed in

YFT, and that we could use Equation (9) presented in Bushnell

and Brill (1991) (using normoxic PiO2¼154 mmHg). We ad-

justed the Vg to be three times higher in ABFT (due to their larger

size: see above), and took the same slope for %U versus Vg as for

YFT in Bushnell and Brill (1991). After adjusting the equation to

use Vg in L/min, %U for ABFT can be calculated as:

%U ¼ �0:007 Vg þ 0:83 (6)

Oxygen delivery via the gills (O2g) was thus calculated as

O2g ¼ Vg %U O2 (7)

The last element of the oxygen balance model was the cardiac

transport sub-model, which depended on cardiac output (Q) and

the difference in oxygen content of arterial and venous blood

(O2a–v) (i.e. the Fick equation; Brill and Bushnell, 2001). Q in

tunas is primarily determined by heart rate (HR), with stroke vol-

ume staying relatively constant (Korsmeyer et al., 1997a; Blank

et al., 2004). Pacific bluefin tuna heart rates have been shown to

increase approximately logarithmically with water temperature

(Blank et al., 2004; Clark et al., 2013b). Comparison of heart rates

Figure 1. Schematic diagram of the metabolic oxygen balance model. (Tuna image: NOAA).
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from spinally blocked (Blank et al., 2002) and free-swimming

(Korsmeyer et al., 1997a) YFT suggested that results from blocked

fish under “maximal” conditions were roughly analogous to free

swimming fish traveling at �2.5 BL/s. However, the effect of

swimming speed on heart rate was relatively minor compared to

that of water temperature. We used observations of heart rate

from spinally blocked Pacific bluefin tuna with temperature from

Blank et al. (2004), assuming these were equivalent to a swim-

ming speed of 2.5 BL/s, and from swimming Pacific bluefin tuna

(average swimming speed of �1.1 BL/s; Clark et al., 2013b). A

multivariate exponential relationship between heart rate, water

temperature, and swimming speed was then estimated using non-

linear least squares (nls) in R 3.2.1 (R Core Team 2015). The

equation derived explained 92% of the variability in observations,

and was defined by

HR ¼ 11:91þ 2:88 Uð Þe0:07 T (8)

where U is swimming speed (BL/s) and T is water temperature.

Experiments on spinally blocked fish suggest that tuna can

maintain reasonably constant O2a–v, even under hypoxic condi-

tions (Bushnell and Brill, 1992). Korsmeyer et al. (1997b) showed

that YFT O2a–v was �0.06 ml O2/ml at slow swimming speeds (1

BL/s), and Brill and Bushnell (2001) estimated a maximum value

of �0.16 ml O2/ml. However, bluefin tuna blood has a higher

oxygen affinity than YFT blood. This means that bluefin tuna

blood reaches half saturation at a lower oxygen partial pressure

(i.e. ABFT will have a lower P50 than YFT). In addition, bluefin

tuna blood shows a reverse temperature effect, meaning that

blood oxygen affinity increases (i.e. P50 decreases) at cooler tem-

peratures (Clark et al., 2008: Southern bluefin tuna; Brill and

Bushnell, 2006: ABFT). As the relationships between temperature,

ambient oxygen concentrations, swimming speed and O2a–v re-

main uncertain in ABFT, we assumed that O2a–v would be 0.06 ml

O2/ml at slow (1 BL/s) swimming speeds, and 0.11 ml O2/ml at

moderate (2 BL/s) swimming speeds, with O2a–v at other swim-

ming speeds calculated using a simple linear regression. However,

we note that this part of the model lacks direct experimental con-

firmation, and should be refined as data on O2a–v in swimming

ABFT are obtained. Cardiac oxygen delivery (O2c) was thus

defined as

O2c ¼ 60
HR SV O2a�v

0:7
(9)

where HR is heart rate and SV is stroke volume (held constant at

1.2 ml/beats/kg). Dividing by 0.7 and then multiplying by 60 gives

oxygen delivery in mg O2/kg/h.

Oxygen balance (i.e. surplus or deficit) was determined by sub-

tracting metabolic demand from the lesser of O2g and O2c.

Results were visualized by applying oxygen balances from the

model to mean upper 50 m temperature (1995–2014 mean) and

oxygen (long-term climatology) from the World Ocean Atlas

(WOA: Garcia et al., 2014; Locarnini et al., 2013). ABFT can des-

cend to several hundred metres to feed, and their vertical move-

ment behaviour changes by geographic region (Teo et al., 2007;

Walli et al., 2009; Abascal et al., 2016). However, they usually re-

turn to the upper mixed layer between descents, and so we

defined the upper 50 m of the water column as their core habitat,

where oxygen debts incurred during deep descents could be re-

paid. Mean 5� � 5� catch rate data (fish/1000 hooks) from the

International Commission for the Conservation of Atlantic Tunas

(ICCAT) Task II database (1997–2014) were overlaid on model

predictions (interpolated using kriging in Surfer 9: Golden

Software), to assess relationships between favourable metabolic

habitat, and observed ABFT distributions in the North Atlantic.

Catch rates are strongly influenced by fishing methods, gear con-

figurations, reporting accuracy and other confounding factors,

which makes detailed spatial comparisons unwise. Catch rate data

were therefore presented only as “absent” (no ABFT recorded),

“low” (<0.2 fish/1000 hooks), or “high” (>0.2 fish/1000 hooks).

Locations with>0 ABFT recorded, but low overall fishing effort

(<10,000 total hooks set over the entire period), were categorized

as “present (low effort)”.

Correlative species distribution model
Adult ABFT presence/absence data were sourced from the NOAA

National Marine Fisheries Service (NMFS) pelagic longline fish-

ery logbook program (Beerkircher et al., 2002). Each set in the

database has information on catch composition, gear configur-

ation, fishing date, and longitude and latitude. Three available

and potentially useful environmental habitat predictors were

identified based on a literature search: temperature, chlorophyll a
(chlorophyll hereafter), and dissolved oxygen. We used sea sur-

face temperature, since these synoptic observations are widely

available from satellite sensors, and temperature at 100 m depth,

which can be used to distinguish among shallow water masses in

sub-tropical regions, and has implications for vertical movement

behaviour and thermoregulation (Teo et al., 2007; Walli et al.,

2009; Muhling et al., 2010; Teo and Boustany, 2016). Chlorophyll

is available as sea surface chlorophyll from satellite sensors, which

we employed as a proxy for upper ocean primary productivity.

Dissolved oxygen limits vertical tuna distributions, particularly

near hypoxic zones (Barkley et al., 1978; Brill, 1994; Humpston

et al., 2000; Lowe et al., 2000; Stramma et al., 2012), so oxygen at

100 m depth was also included. Catchability of some target spe-

cies on longline gear varies with moon phase (Bigelow et al.,

1999), and so the fraction of the moon illuminated was included

for each set date from the U.S. Naval Observatory (http://aa.usno.

navy.mil/data/docs/MoonFraction.php).

Environmental conditions at each longline set location were

obtained from a number of different sources, using the MGET

toolbox in ArcGIS 10.0 (Roberts et al., 2010). Surface tempera-

tures were derived from the 8 day NOAA Pathfinder 5.1 and

MODIS Aqua satellite datasets. If no satellite data were available

due to clouds, we used results from the HYCOMþNCODA

GLBu0.08 daily reanalysis. Surface chlorophyll concentration was

extracted from the SeaWiFS and MODIS Aqua 8 day satellite

datasets, with a mean taken if both were available. Water tem-

peratures at 100 m were extracted from HYCOM GLBu0.08, and

oxygen levels at 100 m were extracted from the WOA long-term

climatology (Garcia et al., 2014). A total of 62 115 longline sets

from between September 1997 and August 2010, with all four en-

vironmental variables available for the time and location of the

set, were selected for use in SDM training and testing.

One issue with use of the logbook data was that the lower tem-

perature limit for ABFT remained undefined. ABFT were re-

corded at surface temperatures as low as 10–12 �C, and there was

no recorded fishing activity in waters cooler than this. To address

this problem, we included eight “dummy” negative stations in the

Davis Strait (between Canada and Greenland) at 55–60�N. ABFT
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have not previously been recorded in this area, which is charac-

terized by very cold waters (<10 �C at the surface throughout the

year) (Mather et al., 1995; Block et al., 2005; Boustany et al.,

2008; Walli et al., 2009; Orbesen et al., unpublished data). Each

station was repeated 70 times in the training dataset, to give them

sufficient weight in the SDM training process. This forced a lower

temperature limit in the habitat model but, as discussed later, is a

source of considerable uncertainty.

The predictive SDM was built as a presence/absence boosted

regression tree model using the gbm (generalized boosted regres-

sion models) package in R 3.2.1 (Elith et al., 2008), with a

Bernoulli error distribution. Pearson correlations among the five

predictor variables did not exceed 0.65, and so all were retained

in the model. The best learning rate and tree complexity were

determined using the optimization routines described in Elith

et al. (2008), with half of the dataset used for training the model,

and the other half retained for skill testing. Importance of pre-

dictor variables was defined based on the number of times each

variable was used for tree splitting, weighted by the squared im-

provement to the model as a result of each split, and averaged

over all trees (Friedman and Meulman 2003; Elith et al., 2008).

Results were visualized by applying the model to climatological

surface and 100 m temperature (1995–2014), and 100 m oxygen

(long-term climatology) from WOA, and climatological surface

chlorophyll from SeaWiFS (1997–2014) from the broader North

Atlantic, and kriging these in Surfer 9. Moon illumination

assumed a climatological value of 1. ICCAT catch rate data were

again overlaid, and compared to predictions of favourable habitat

from the SDM.

Earth system model
A GCM with biogeochemical components (dissolved oxygen, sur-

face chlorophyll) was required to project both the oxygen balance

model and SDM forward in time. However, available GCMs from

the latest Coupled Model Intercomparison Project Phase 5

(CMIP5) often give markedly different values for biogeochemical

tracers in both historical runs and future projections (Bopp et al.,

2013). Assessment of four commonly used models that spanned a

range of potential futures (GFDL-ESM2M, IPSL-CM5A-LR,

CESM1-BGC, and MPI-ESM-LR; Bopp et al., 2013; Flato et al.,

2013) showed that historical runs of the GFDL model reproduced

spatial patterns of surface chlorophyll in the North Atlantic

Ocean much more realistically than the other models, or a mean

ensemble of all four models (results not shown). As there is rea-

sonably close agreement in projected future changes in surface

chlorophyll from these models (Bopp et al., 2013), we chose to

use only the GFDL-ESM2M model for our study (Dunne et al.,

2013). Sea surface temperature, 100 m temperature, 100 m oxy-

gen and surface chlorophyll were obtained at monthly resolution

from the Earth System Grid Federation portal at the Lawrence

Livermore National Laboratory (https://pcmdi.llnl.gov/projects/

esgf-llnl/). Oxygen fields were only available from ESM2M at an

annual time step. We therefore applied the mean seasonal signal

observed from the WOA oxygen climatology at interpolated

(kriging) 1� � 1� resolution to the annual 100 m oxygen fields

from ESM2M, to estimate the seasonal cycle. Results were com-

pared between a historical run of the model (1971–2000 mean),

and a late 21st century projection (2071–2100) under

Representative Concentration Pathway (RCP) 8.5.

We used a simple sensitivity analysis to assess which of the

four environmental predictors were most important for projec-

tions of future habitat gain or loss from the SDM. This involved

re-scoring the environmental fields from ESM2M through the

SDM, but holding one variable at a time constant between the

two time periods (1971–2000 vs. 2071–2100). Projected patterns

in habitat loss and gain were then compared between the original

time period, and four addition model runs:

(1) surface temperature held constant between the two time

periods (i.e. no future warming),

(2) 100 m temperature held constant,

(3) 100 m oxygen held constant, and

(4) surface chlorophyll held constant.

Results
Oxygen balance model
The GAM predicting metabolic rate from swimming speed and

temperature explained 90.6% of the observed variability in the

combined experimental data from Blank et al. (2007a, b) and

Clark et al. (2013a, b). Both predictors, and a linear interaction

term, were highly significant in the GAM model (p< 0.001).

Metabolic rate increased with swimming speed, and was

minimal between �10 and 20 �C (Figure 2). The interaction

between swimming speed and temperature first described by

Blank et al. (2007a) was strongly evident, with the effect of

swimming speed on metabolic rate increasing at warmer

temperatures.

The model of oxygen uptake through the gills largely depended

on ambient oxygen concentrations, while the model of oxygen

supply to tissues through the circulatory system depended on

water temperature (Figure 3). We assumed that the minimum

value from these two models in any given set of conditions would

constitute the limiting factor for oxygen supply to offset meta-

bolic demand. At a moderate swimming speed (2 BL/s), this re-

sulted in the lowest predicted oxygen balance at <5 �C, and

maximum oxygen balance at 10–25 �C, depending on ambient

oxygen concentrations (Figure 3).

Figure 2. Results from a GAM to predict metabolic demand in
ABFT from water temperature and swimming speed using data from
published laboratory studies (Blank et al., 2007a, b; Clark et al.,
2013a, b). Examples of predicted metabolic demand are shown for
four swimming speeds: 1, 1.5, 2, and 2.5 BL/s.
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Correlative species distribution model
Pelagic longline fishing activity in the US fleet from 1997 to 2010

(which we used to build the correlative habitat model) followed a

seasonal distribution. There was more effort in the Sargasso Sea

and east of the Bahamas in winter and more effort in the Mid-

Atlantic Bight and the far north-western Atlantic during summer

(Figure 4). Although ABFT are also targeted by other gears (e.g.

rod and reel) in shallower areas in the Gulf of Maine and Mid-

Atlantic Bight, pelagic longline activity was restricted to deeper

waters. The northern limit of fishing roughly corresponded to the

mean position of the surface 10 �C isotherm. The fleet primarily

fished in waters with low to moderate chlorophyll at the surface

(<0.25 mg/m3), with the exception of the Gulf Stream front and

Grand Banks region southeast of Newfoundland during summer

(Figure 4).

Optimization runs showed that the boosted regression tree

SDM was best parameterized with a learning rate of 0.01, and a

tree complexity of 7, resulting in a total of 2350 trees. Oxygen at

100 m and surface temperature were the most influential variables

in the model (scores of 27.98 and 23.98, respectively), followed by

temperature at 100 m (score of 20.68) and surface chlorophyll

(score of 17.74). Moon phase was less influential, with a score of

9.61.

Partial plots from the SDM showed that ABFT were most likely

to be encountered on longline sets when oxygen at 100 m was be-

tween 7 and 10 mg/L, and when sea surface temperatures were be-

tween 10 and 16 �C (Figure 5). Relationships with 100 m

temperature were uncertain at very cold temperatures, but the

probability of occurrence of ABFT generally decreased with

temperature between 6 and 28 �C. The effect of surface chloro-

phyll was not clear from the partial plot, but results suggested a

lower probability of occurrence of ABFT when values were less

than 0.7 or greater than 3.2 mg/m3 (note fourth root transform-

ation in figure). Moon phase was the weakest predictor in the

model, but the partial plot showed a generally elevated probabil-

ity of occurrence of ABFT during the full moon (Figure 5).

Model comparison
The ICCAT 5� � 5� catch rate data showed that ABFT were most

commonly encountered south of 50�N during winter and south

of 60�N in summer (Figure 6). Highest catch rates in winter were

observed in the Gulf of Mexico, Mid-Atlantic Bight, between

Morocco and the Bay of Biscay, and the open Atlantic at equiva-

lent latitudes. During summer, areas of highest catch rates gener-

ally moved north, with maximum values off the Gulf of Maine,

Bay of Biscay, and nearly as far north as Iceland. Catch rates were

also high in the Mediterranean Sea in both seasons (Figure 6).

The oxygen balance model run for a moderate swimming

speed of 2 BL/s predicted a broad zone of suitable habitat roughly

coincident with observed positive catch rates (Figure 6: upper

panels). ABFT were rarely encountered in the equatorial Atlantic

Ocean and Caribbean Sea, and these areas corresponded to low

predicted oxygen balances. The oxygen balance model also pre-

dicted low habitat suitability in cold waters north of the Gulf

Stream and North Atlantic Current, where no catch rate data

were available. While ABFT were observed towards the northern

boundary of theoretically favourable habitat in both seasons,

some favourable habitat off western Africa had no positive

catches recorded (Figure 6).

Predicted probabilities of occurrence from the SDM also gen-

erally agreed with observed catch rates from the ICCAT database

(Figure 6: lower panels). In summer, the highest predicted proba-

bilities were in the Mediterranean Sea, from Morocco up to

Iceland in the northeast Atlantic Ocean, and offshore of the Gulf

of Maine in the north-west. Regions with high probabilities of oc-

currence from the SDM agreed well with regions of modelled

maximum oxygen balance in summer, although the SDM pre-

dicted slightly more favourable habitat east of the south-eastern

U.S., and in the Gulf of Saint Lawrence (Canada). In contrast,

predictions from the two models for winter were quite different

(Figure 6). While regions of favourable habitat from the SDM

broadly corresponded to regions of maximum oxygen balance,

these were much patchier in the SDM, particularly in the western

Atlantic. Predictions from the SDM were also more favourable

across the 25�N parallel (Figure 6). ABFT were present in this

area in both the ICCAT database and the pelagic longline log-

books (Figure 4), although catch rates were generally low. Both

oxygen balance from the metabolic model, and probability of oc-

currence from the SDM, were low in the Gulf of Mexico during

winter, despite moderate to high catch rates in this region.

Climate change projections
ESM2M projected that the pelagic environment in the North

Atlantic Ocean would warm �2.5 �C between 1971–2000 and

2071–2100 in the region south of 40�N, at both the surface and

100 m depth (Figures 7 and 8). North of 40�N, the pattern was

more complex, with strong cooling in a region south of

Greenland, slight cooling around Iceland, and warming elsewhere.

Oxygen at 100 m was projected to decrease by �0.28 mg/m3

Figure 3. Modelled metabolic demand, oxygen supply through the
gills, oxygen supply through the circulatory system, and the resulting
overall oxygen balance for a ABFT swimming at 2 BL/s across a range
of temperature and dissolved oxygen conditions. Results are
constrained to upper 50 m temperature (1995–2014) and oxygen
(long-term climatology) conditions observed in the WOA for the
North Atlantic Ocean.
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throughout most of the region, with the exception of an increase

south of Greenland in the area of projected cooling, as expected

from a temperature-solubility control. Surface chlorophyll was

projected to increase north of 40�N, and also in the

Mediterranean Sea during winter, but to decrease throughout

most of the region during summer (Figures 7 and 8).

These changes in the pelagic ocean environment resulted in

shifts in projected habitat for ABFT. The oxygen balance model

predicted a decrease in habitat suitability south of 35–40�N in

both seasons, due to warming waters and associated slight de-

creases in oxygen (Figure 9). The projected cooling south of

Greenland and around Iceland also reduced the predicted oxygen

balance in this area, with the negative influence of temperature

on heart rate and blood oxygen transport outpacing the positive

effect of increased oxygen concentrations. The oxygen balance

model projected improved habitat elsewhere north of 40�N, as a

result of warming ocean temperatures.

Projections from the SDM were broadly similar to those from

the oxygen balance model, but more pessimistic in winter north

of �40�N (Figure 9). The SDM predicted that habitat throughout

the North Atlantic Ocean would generally become less suitable

for ABFT in both seasons, with the exception of a band of mostly

improved conditions between 40 and 50�N, from the Gulf of

Saint Lawrence across to the northern Bay of Biscay and Celtic

Sea. The gains in habitat in these areas were mostly consistent

with results from the oxygen balance model. However the SDM

did not show a general improvement in habitat in the rest of the

far North Atlantic, whereas the oxygen balance model did (Figure

9). When we compared projected changes in habitat suitability to

the core habitats where ABFT catch rates are currently positive

(Figure 6), we noted a general loss of habitat projected for the

southern and northern parts of the current range, with some

gains in the central portion. While the oxygen balance model pro-

jected that some areas north of the current range would become

more suitable, the SDM showed loss of habitat or neutral condi-

tions in these areas (Figure 9).

As results from the oxygen balance model and the SDM were

markedly different between waters north and south of �40�N, we

calculated the sensitivity analysis results separately for these two

regions (Figure 10). In the area north of 40�N, the SDM predicted

an average 0.8% drop in probability of occurrence (6.1% down to

5.3%, p<0.01, t-test) of ABFT on longline sets in winter, and a

slight increase in summer (8.2% up to 8.6%, p<0.01, t-test), be-

tween 1971–2000 and 2071–2100 (Figure 10). When either sea

surface temperature or 100 m temperature was held constant, re-

sults became more optimistic for both seasons. If oxygen levels at

100 m were unchanged between the two time periods, summer

projections became slightly more pessimistic; and if surface

chlorophyll remained constant, winter projections became more

optimistic. Our results suggested that the projected decrease in

winter habitat north of 40�N was largely a result of ocean cooling

south of Greenland, and that this cool area also limited the north-

ward expansion of ABFT habitat in summer. There was a second-

ary, and unexpected, negative effect of increased chlorophyll

during winter.

In contrast, model sensitivities for the region south of 40�N

were more straightforward. The SDM run considering climate-

induced changes across all variables projected a 1.4% decrease in

probability of occurrence in winter (2.4% down from 3.8%,

p<0.01, t-test), and a 1.7% decrease in summer (1.9% down

Figure 4. Fishing activity in summer and winter for the U.S. pelagic longline fleet. Rounded 1 � 1� locations with all environmental variables
used in the SDM available for at least 10 sets from 1997 to 2010 are shown as black dots. Climatological surface temperature (WOA: 1995–
2014) and surface chlorophyll (SeaWiFS: 1997–2010) are also shown, along with schematic representations of the Gulf Stream and North
Atlantic Current. Note non-linear scale for chlorophyll.
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from 3.6%, p<0.01, t-test) (Figure 10). Holding ocean tem-

peratures constant resulting in more optimistic results, while

holding 100 m oxygen or surface chlorophyll constant made

minimal difference. The projected loss of habitat south of 35�N

was therefore primarily a result of ocean warming, particularly at

depth.

Discussion
Bluefin tuna spatial distributions
Our results suggest that ABFT are generally distributed within

parts of the North Atlantic Ocean with favourable metabolic

characteristics, and that these regions shift seasonally. Predicted

suitable habitat from both the oxygen balance model and the cor-

relative SDM matched reasonably well with spatial catch rate

data, with the exception of the Gulf of Mexico. These were also

consistent with known ABFT migration routes and habitat use

from studies employing both conventional and electronic data

recording tags (Block et al., 2001, 2005; Boustany et al., 2008;

Walli et al., 2009; Wilson et al., 2015). These data sources are

complementary, as while fisheries-dependent catch-data may be

easier to obtain than tagging data, the former cannot distinguish

between fish which have been caught as they migrate through an

area from those which are resident. Conversely, data from elec-

tronic tags show the spatial heterogeneity of habitat use, and dir-

ected migratory behaviour between feeding and spawning

grounds (Block et al., 2005; Teo et al., 2007; Walli et al., 2009;

Neilson et al., 2014). They are also less dependent on the spatial

coverage of fishing fleets, and are not subject to many of the

issues of bias associated with using fishery-dependent catch rate

data (Walters, 2003; Bishop, 2006). However, in our study, the

spatially restricted US pelagic longline data were still effective at

training a SDM which was consistent with unseen, Atlantic-wide

catch rate data (from ICCAT), and with the seasonal habitat use

defined by previous electronic tagging studies (Block et al., 2005;

Walli et al., 2009).

Figure 5. Boosted regression tree (BRT) modelled (line) and observed (dots) relationships between presence/absence of ABFT on pelagic
longlines, and five environmental predictors from the SDM. Dashed lines show 61 standard error from SDM predictions within each bin
plotted, thus representing variability (from all sources) in the model at different environmental conditions. Only results from the test data
(i.e. those not used to build the SDM) are shown.
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Figure 6. Predicted oxygen balance (top) and probability of occurrence (bottom) from the metabolic oxygen balance model and the SDM,
respectively. Results from the oxygen balance model are shown for an ABFT swimming at 2 BL/s. Catch rate data from the ICCAT Task II
database (1997–2014) are overlaid. Waters shallower than 50 m are masked for the metabolic model, and waters shallower than 100 m are
masked for the SDM, as a function of predictor variables used in each model.

Figure 7. Projected winter (January–March) changes in surface temperature, 100 m temperature, 100 m oxygen, and surface chlorophyll
from the ESM2M earth system model, 1971–2000 vs. 2071–2100.
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Figure 8. As for Figure 7, but for summer (July–September).

Figure 9. Projected change in oxygen balance (top) and probability of occurrence (bottom) for ABFT between 1971–2000 and 2071–2100,
from the ESM2M earth system model. The regions where positive catch rates for ABFT have been recorded in the ICCAT Task II database
(1997–2014: i.e. Figure 6) are shown as dashed polygons.
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Adult ABFT tagged in the North Atlantic Ocean migrate as far

south as the Gulf of Mexico and northern Caribbean Sea, and as

far north as Newfoundland, Iceland and Norway (Mather et al.,

1995; Block et al., 2005; Walli et al., 2009; Wilson et al., 2015),

with the northern boundary of their distribution synonymous

with the northern wall of the Gulf Stream and the North Atlantic

Current. Our results show that this distributional limit is associ-

ated with the northern boundary of favourable metabolic habitat.

Both the oxygen balance model and the SDM predicted favour-

able habitat connecting the eastern and western North Atlantic in

both winter and summer, which may facilitate trans-Atlantic mi-

grations (Mather et al., 1995; Block et al., 2005; Rooker et al.,

2008).

One historical migratory route which was not supported by

our results was the so-called “Brazilian episode”, where ABFT

were found in sufficient numbers to support a fishery off Brazil in

the 1950s and 1960s (Takeuchi et al., 2009). Two ABFT tagged

with conventional tags near the Bahamas during this time were

recaptured off Brazil and Argentina, confirming a link between

the Brazilian fish and the north Atlantic Ocean (Mather et al.,

1995). The oxygen balance model that we developed showed gen-

erally unfavourable habitat in the tropical Atlantic between the

Bahamas and Brazil in both winter and summer. The SDM also

showed low probabilities of occurrence in this area, with the ex-

ception of some small, marginally favourable areas in winter.

Fromentin et al. (2014) hypothesized that ABFT habitat between

the Bahamas and South America was more favourable in the

1960s than the present day, primarily due to slightly cooler sur-

face temperatures. This may have allowed easier migration across

equatorial waters, with lower metabolic stress incurred.

ABFT distributions were not purely a function of predicted

oxygen balance, however. Most large adult ABFT migrate to the

Gulf of Mexico area from late winter to early summer to spawn

(Mather et al., 1995; Block et al., 2005; Muhling et al., 2010). This

region is characterized by very warm sea surface temperatures,

which may approach 28–30 �C by the end of the spawning season

(Muller-Karger et al., 2015; Wilson et al., 2015). As a result, the

oxygen balance model predicted that habitat suitability in this

area was low or marginal, even during winter. Several authors

have proposed that this environment may cause metabolic stress

in ABFT, and noted that they adopt more extensive vertical

movement patterns while on the spawning ground in order to

thermoregulate, particularly while traversing the Loop Current

(Blank et al., 2004; Block et al., 2005; Teo et al., 2007).

Conversely, ABFT feeding grounds can include very cold

waters in the northern North Atlantic. Adult ABFT have been

caught near Iceland, Greenland and historically near Norway,

where surface temperatures may be as low as 9–11 �C (Mather

et al., 1995; Mackenzie et al., 2014). These areas are typically close

to the northern limits of favourable metabolic habitat. Several au-

thors (Brill, 1994; Brill and Lutcavage, 2001; Bernal et al., 2010;

Horodysky et al., 2016) have argued that temperature, dissolved

Figure 10. Sensitivity testing for the SDM. Projected change in probability of ABFT occurrence on pelagic longlines is shown for (L–R): the
original model (i.e. Figure 9), for a model where surface temperature (SST) is held constant and does not change between 1971 and 2000, for
a model where 100 m temperature (T100) is held constant, for a model where 100 m oxygen (O100) is held constant, and where surface
chlorophyll (Chl) is held constant. Dark bars denote winter, light bars summer. Results are shown separately for the region of north 40�N, and
south of 40�N.
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oxygen and prey concentrations are the primary mechanisms

driving distributions of large pelagic fishes, including tunas. They

considered the first two variables to be physically limiting, and

the last to be “permissive/attractive”, which is consistent with

finer-scale use of feeding habitats within broader physiological

limits. This concept was demonstrated in the field for the

California Current ecosystem, where Pacific bluefin tuna were

observed to target favourable foraging habitats within broadly

suitable metabolic temperature ranges (Kitagawa et al., 2007;

Whitlock et al., 2015). Walli et al. (2009) also noted that tagged

ABFT ranged throughout much of the sub-tropical and temperate

north Atlantic, but congregated in spatially restricted, high-use

feeding areas, which shifted seasonally.

In the context of previous studies, our results thus suggest that

ABFT do not preferentially occupy regions of absolute lowest

metabolic stress, but rather complete necessary biological proc-

esses (spawning, feeding) within physiological limits, and some-

times near the boundaries of these. Areas of highest habitat use

correspond closely to specific environmental conditions suitable

for spawning or feeding, which are within theoretical metabolic

limits, but more spatially restricted. The nature of conceptual

models linking metabolic scope and species distributions and be-

haviours are still under some discussion (Clark et al., 2013a;

Farrell, 2016). However, tunas have relatively high standard meta-

bolic rates, and require additional metabolic scope above these

for digestion (specific dynamic action), somatic and gonadal

growth, and repayment of oxygen debt incurred by descending

into cold or oxygen-limited habitats to feed (Brill, 1987; Bushnell

and Jones, 1994; Brill, 1996; Korsmeyer et al., 1996; Clark et al.,

2010; Whitlock et al., 2013; Estess et al., 2014). The availability of

oxygen to sustain essential physiological processes would there-

fore place limits on overall distributions, although not necessary

patterns of abundance within these (Brill, 1994; Bestley et al.,

2009).

Comparison with other tuna species
The association of maximum oxygen balances with temperatures

of 10–20 �C for ABFT were primarily a result of the unusual rela-

tionship between metabolic demand and temperature for bluefin

tuna species. Pacific bluefin tuna metabolic oxygen demand in la-

boratory experiments has been shown to be at a minimum at

�15 to 20 �C at low or moderate swimming speeds, increasing as

temperatures cooled or warmed beyond this range (Blank et al.,

2007a; Clark et al., 2013b; Clark, 2016). This is in contrast to

YFT, where metabolic rates have been shown to increase with

temperature between 18 and 30 �C (Brill, 1987; Dewar and

Graham, 1994). To the best of our knowledge, no studies have

been completed at temperatures colder than 18 �C, but within

this range, YFT do not show any evidence of the U-shaped rela-

tionship exhibited by ABFT. As a result, a metabolic scope model

for YFT developed by Del Raye and Weng (2015), using experi-

mental data and metabolic theory, showed that maximum meta-

bolic scope for this species was at � 25 �C, rather than at the 10–

20 �C suggested for bluefin tunas.

Pacific bluefin tuna also have higher overall metabolic rates

than YFT at the same temperature and swimming speed (Blank

et al., 2007b). This suggests a fundamental physiological differ-

ence between the two species. If oxygen balance is an important

determinant of metabolic stress in warm waters, bluefin tunas

may be slightly disadvantaged in these habitats compared to YFT,

and other tuna species that primarily occupy tropical and sub-

tropical areas. However, interactions between ambient tempera-

ture and oxygen, vertical movements and thermoregulation, and

metabolic scope in different tunas as they relate to upper tem-

perature tolerances are difficult to quantify. Early studies of

warm-water species such as skipjack tuna (Katsuwonus pelamis)

speculated that they would be prone to over-heating in warm re-

gions as a consequence of their endothermy (Barkley et al., 1978).

However, it has since been shown that tuna are able to quickly

adjust the efficacy of their vascular counter-current heat exchan-

ger in response to water temperature (Dizon and Brill, 1979a,b;

Holland et al., 1992; Brill et al., 1994; Dewar et al., 1994), which

complicates accurate modelling of thermal stress (Boye et al.,

2009). Bluefin tunas can maintain much warmer body tempera-

tures than YFT, allowing them to forage in much colder waters

(Carey and Teal, 1969; Graham and Dickson, 2001), although

maintaining thermal excess in cold waters may be associated with

significant metabolic costs (Blank et al., 2007a; Kitagawa et al.,

2007). Previous studies have speculated that high mortality of

ABFT caught on longline gear in the warm Gulf of Mexico may

be due to oxygen stress (Blank et al., 2004). However, exactly how

ABFT physiology may contribute to intolerance of warm waters,

and why this problem is not as severe for warm-water tunas

caught in the same area (e.g. YFT, skipjack tuna), is not com-

pletely clear.

In contrast, the superior ability of bluefin tuna hearts to toler-

ate cold temperatures, in comparison to more tropical tunas, is

well documented. Pacific bluefin tuna can maintain cardiac func-

tion in waters as cold as 2 �C, and have higher heart rates and car-

diac output than YFT at temperatures of <15 �C (Blank et al.,

2004). This appears to be due to several physiological specializa-

tions of bluefin tuna hearts, which distinguishes them from other

tuna species (Landiera-Fernandez et al., 2004; Galli et al., 2009;

Madigan et al., 2015). As a result, the poleward limits of favour-

able metabolic habitat in this study, which result primarily from

the effects of cold temperatures on heart rates, can be considered

to have higher confidence than the equatorward limits, which are

due to very high modelled metabolic demands at warm

temperatures.

Projection of climate change impacts
Application of the oxygen balance model and SDM to projections

of future conditions from the ESM2M model showed general loss

of habitat for ABFT under climate change. Strong warming and

some deoxygenation south of �40�N led to lower predicted oxy-

gen balances, and lower predicted probabilities of occurrence. In

contrast, habitat suitability from both the oxygen balance model

and the SDM was projected to improve around the Gulf of

Maine, Nova Scotia, and Newfoundland. This was primarily due

to the future warming of cold waters which are currently north of

the Gulf Stream, partially as a result of a northward shift in this

circulation feature (Joyce and Zhang, 2010; Saba et al., 2016).

Waters near Greenland, Iceland and Norway were predicted to

become more favourable in the oxygen balance model, but not in

the SDM. The cooling projected for the region south of

Greenland resulted in lower habitat suitability under future con-

ditions in both predictive models. This cooling feature is present

in many GCMs, but is particularly prominent in ESM2M. It is

due to the influence of a weakening Atlantic Meridional

Overturning Circulation, as well as reduced mixing, and increased
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freshwater inflow from the Greenland ice sheet (Drijfhout et al.,

2012; Jahn and Holland, 2013; Kim and An, 2013; Agarwal et al.,

2014; Swingedouw et al., 2014). In addition to these oceano-

graphic changes, the shoaling of deep winter mixing and

enhanced stratification in the far North Atlantic may partially al-

leviate the current light limitation on primary productivity in this

region, resulting in a winter surface chlorophyll increase.

Conversely, enhanced stratification during summer will likely ex-

acerbate current nutrient limitation, leading to reduced surface

chlorophyll, and potentially less favourable feeding conditions

(Doney, 2006; Stock et al., 2014).

Projections of future ABFT habitats are largely consistent with

Muhling et al. (2015), who found that thermal habitat from cor-

relative SDMs for adult for larval and adult ABFT is likely to de-

crease on the Gulf of Mexico spawning grounds as a result of

anthropogenic warming. In contrast, Hazen et al. (2013) predict a

future increase in core habitat for Pacific bluefin tuna in the

North Pacific by the end of the 21st century, using projections

from ESM2.1, under the A2 CO2 emission scenario. This is largely

due to the weak warming projected for core Pacific bluefin tuna

habitat in the California Current region (<1 �C). Chlorophyll

concentrations in this area are also projected to increase, poten-

tially expanding favourable feeding habitat (Boustany et al.,

2010). Region-specific patterns of climate change effects on

oceanographic environments can thus cause widely diverging

projections of biological impacts, even for very closely related

species.

Projections of future changes in habitat suitability in this study

are reasonably similar between the oxygen balance model and the

SDM, partially because of the importance of temperature and

oxygen to both models. However, there are some differences be-

tween the two approaches. While both models projected a loss of

ABFT habitat south of �40�N, and south of Greenland, the SDM

is more pessimistic in the rest of the far North Atlantic. This is

partially because probabilities of ABFT occurrence from the SDM

cannot be less than 0. Cold areas of the North Atlantic in winter,

such as near Norway and Iceland, warm less than 1 �C in ESM2M

between 1971–2000 and 2071–2100, remaining below 5 �C. Thus

predicted probabilities of occurrence from the SDM remain near

zero, and the change in habitat suitability will be near zero.

However, some of the differences between the oxygen balance

model and the SDM also result from the SDM attempting to ex-

trapolate near or beyond the edges of conditions encountered in

the training data. For example, winter chlorophyll concentrations

north of 40�N are projected to increase into the future. The sensi-

tivity analyses show that this contributes to a loss of winter habi-

tat in the SDM. This is counter-intuitive, but resulted from the

SDM attempting to extrapolate the effects of chlorophyll in very

cold waters, which it had not previously “seen” in the training

dataset. This was because the training dataset was sourced from

fisheries-dependent logbook data, and so any predictions beyond

the range of conditions fished by pelagic longline fishermen

required extrapolation by the SDM.

This demonstrates an important weakness for the use of cor-

relative SDMs: that they are only as good as their training data.

Where suitable habitat is largely assumed to be related to tem-

perature, SDMs will be the most successful where there is good

information on both upper and lower limits. In our study, upper

temperature limits are well defined, as the pelagic logbook data

included extensive effort in warm sub-tropical and tropical waters

where ABFT are largely absent. In contrast, lower temperature

limits had to be artificially forced in the SDM, which leads to

high uncertainty in future projections for the far North Atlantic.

Key uncertainties
The two biological models we developed in this study give quite

similar results when applied to both recent historical and poten-

tial future conditions, primarily because water temperature and

oxygen are important to both. However, they did demonstrate

some of the advantages and disadvantages with using correlative

versus mechanistic biological models to assess climate change im-

pacts. SDMs require relatively few input variables and no mech-

anistic understanding to parameterize, and there are standard

methods available in most cases to assess model performance and

predictive skill (Peck et al., 2016). However, they rely on statis-

tical methods to approximate biological processes, and must usu-

ally consider non-parametric, non-linear relationships, multiple

predictor variables, and interaction terms in order to fit historical

training datasets. This complexity can lead to unexpected or bio-

logically unlikely results when applied to new datasets, particu-

larly if extrapolation is required. In addition, different types of

SDM can give widely varying results, and (as in our study), may

require subjective adjustment or boundary clipping to force sens-

ible results (Jones et al., 2012; Jarnevich et al., 2015; Cheung

et al., 2016a). It can also be challenging to identify the most bio-

logically important factors that limit a species range, particularly

if mechanistic understanding is limited. Even once these are iden-

tified statistically, projecting correlative SDMs forward in time as-

sumes stationarity; in other words that relationships between a

species and its environment will not change in the future

(Dormann et al., 2012; Horodysky et al., 2015, 2016).

The oxygen balance model is more mechanistic than the SDM,

although it still requires empirical estimation of physiological

processes. The main uncertainties with this model are that

physiological parameters are not well known for adult ABFT, and

so had to be estimated from data obtained from juvenile Pacific

bluefin tuna and YFT. Tuna physiology can change markedly

with body size and with species, even among congeners (Lowe

et al., 2000; Korsmeyer and Dewar, 2001; Blank et al., 2007b).

There are also substantial differences in physiology among tuna

species. These are most obvious for bluefin tunas versus YFT, as

the former have more highly developed endothermic capabilities,

and reach much larger sizes (Carey and Teal, 1969; Graham and

Dickson, 2001). In addition, Clark et al. (2008) highlight several

differences in haematological characteristics among different tuna

species, including blood oxygen affinity (measured as P50, or the

oxygen partial pressure required to achieve 50% blood oxygen

saturation), which Mislan et al. (2015) used as an indicator of

oxygen-based vertical habitat availability. However, there may

also be important differences even among the bluefin tunas. For

example, although all three bluefin tuna species are relatively large

and long-lived, both ABFT and Pacific bluefin tuna grow faster

than Southern bluefin, and ABFT attain the largest size of all three

species (Gunn et al., 2008; Santamaria et al., 2009; Shimose et al.,

2009). The effects of these differences on the validity of building a

model for ABFT based on data from other species are unknown,

but may be substantial. These issues demonstrate one of the main

disadvantages with mechanistic models: their parameterization

requires sufficient experimental data. Where the required infor-

mation is not available, it must be drawn from other species

(“parameter stealing”: Peck et al., 2016), other regions, or other
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life stages; and the contribution of this to overall uncertainty is

difficult to quantify. These considerations highlight the need for

more species-level experimental data across life stages, which can

be challenging to obtain from large, rapidly swimming organisms

such as tunas.

In addition, neither the SDM nor the oxygen balance model

implicitly considered feeding dynamics, although the use of

chlorophyll in SDMs is often considered to be a rough proxy

(Robinson et al., 2011; Hazen et al., 2013). Recent studies have

shown that poleward shifts in ABFT distributions in recent years

are primarily attributable to shifts in prey abundance or quality,

as well as the presence of tolerable water temperatures

(Astthorsson et al., 2012; Mackenzie et al., 2014; Vanderlaan

et al., 2014; Golet et al., 2015; Logan et al., 2015; Jansen et al.,

2016). While more complex life-cycle models including feeding

dynamics are becoming more common for climate change projec-

tions, and are likely the way of the future (Lehodey et al., 2013,

2015; Dueri et al., 2014), they may still result in high uncertainties

in regions where food web dynamics are not yet well understood

(Woodworth-Jefcoats et al., 2015; Peck et al., 2016).

Both the SDM and the oxygen balance model are essentially

distribution models, only considering climate change impacts in

terms of range shifts. While this is a good starting point, other

factors influencing life history and phenology, including estimates

of recruitment potential, stock productivity, interactions with

other species, and adaptive capacity will eventually need to be

incorporated if projections are to be useful for stock management

(McIlgorm, 2010; Hartog et al., 2011; Howell et al., 2013; Peck

et al., 2016; Ward et al., 2016). Our models are also very coarse in

space and time, and do not consider fish behaviour in three di-

mensions, or finer-scale interactions between ABFT and local–re-

gional oceanographic features. This is partly due to the coarse

resolution of ESM2M. Climate models typically have spatial reso-

lutions of �1 degree, and therefore may not well represent im-

portant regional mesoscale and sub-mesoscale oceanographic

circulation features (Liu et al., 2015; Saba et al., 2016). As the

resolution of these models continues to improve, finer-scale pro-

jections will be possible. The representation of biogeochemical

tracers in earth system models is also much less certain than phys-

ical variables such as temperature. There is significant spread

among different earth system models, and regional biases can be

large (Bopp et al., 2013). As a result, we employed only one

model (ESM2M), as it simulated historical surface chlorophyll in

the North Atlantic much more realistically than the other models

considered. However, future work should consider the contribu-

tion of spread in climate models to future projections across all

variables, including temperature and oxygen, and include add-

itional climate change scenarios (e.g. RCP4.5) (Cheung et al.,

2016b).

Our study also focused primarily on horizontal distributions

of ABFT, rather than vertical behaviours. Water column struc-

ture, particularly the depth of oxygen minimum zones, has been

shown to influence vertical movements in large pelagic fishes, and

shoaling of these low-oxygen layers may vertically compress avail-

able habitat (Stramma et al. 2012; Deary et al. 2016). ABFT toler-

ate strong environmental gradients in the course of foraging and

diving behaviours (Brill et al., 2002; Block et al., 2005; Walli et al.,

2009), and Teo et al. (2007) proposed that ABFT on the Gulf of

Mexico spawning grounds use vertical movements to thermo-

regulate in warm waters. However, the ability of ABFT to adjust

these to minimize physiological stress as oceans continue to

warm is not well known.

Despite these uncertainties, our results provide strong support

for temperature and oxygen as important drivers of ABFT distri-

bution in the North Atlantic Ocean. Observed range limits correl-

ate closely with theoretical metabolic oxygen balance, although

abundance within these limits is probably more driven by the tar-

geted use of foraging and spawning environments. The unique

physiology of bluefin tunas results in minimum metabolic costs

at 10–20 �C, which led to the location of favourable habitats in

temperate latitudes of the north Atlantic. Projections of climate

change impacts showed a future loss of habitat in tropical and

sub-tropical regions, but more complex changes in northern

habitats. These have implications for future spatial distribution of

ABFT, and thus availability to fishing fleets from different na-

tions. Given the ecological and economic importance of ABFT,

future work should continue to develop and refine mechanistic

projections of climate change impacts on this, and other, tuna

species.
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